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Asymmetry parameters associated with Fy, Table

1II(a):
a13 = Fa(p? — 1)
o= 3v(p*+ 1)
azs = 3y(p? — 1)

az = 3a(p® — 1). (61)
Asymmetry parameters associated with Fy:

bis = 3a(p* — 1)

b= —3v(p*— 1)

oy = 3v(p* — 1)

ba = — Fa(p* — 1). (62)
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Asymmetry parameters associated with R,, Table
11I(c):

g13= a3z = guu = gu = 0. (63)

Thus, the coupler, the scattering matrix of which had
the form (60), has a symmetry (or asymmetry) equiva-
lent to that shown in Fig. 4. For example, if

!
= exp | —j2r —
? p( ]T)\g>,

then the matrix (60) corresponds to that of a coupler
which is perfectly symmetrical except for lengths of guide
! indicated in Fig. 4. The implications as regard dimen-
sional checks or compensating cuts to be made on the
component are evident.

(64)

Orthogonality Relationships for Waveguides and Cavities
with Inhomogeneous Anisotropic Media*
ALFRED T. VILLENEUVE{

Summary—A modified reciprocity theorem forms the basis of de-
velopment of orthogonality relationships for modes in waveguides
and in cavities containing inhomogeneous, anisotropic media. In the
lossless case certain of these may be interpreted in terms of power
flow and energy storage. The special case of magnetized gyrotropic
media is discussed for longitudinal and transverse magnetization.

INTRODUCTION

ECENTLY the use of anisotropic materials has
R been the subject of numerous theoretical and ex-
perimental investigations.! Such materials are
characterized in their macroscopic behavior by tensor
permittivities or permeabilities. When these tensors are
unsymmetric, the media may be termed “nonreciprocal”
since the usual reciprocity theorem? does not apply to
them. This nonreciprocal behavior finds applications in
such devices as circulators, gyrators, load isolators and
nonreciprocal phase shifters.?
One important special class of nonreciprocal media
is that known as gyrotropic media, wherein application
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manuscript received April 18, 1059, This work was supported by the
Office of Ordnance Research, U. S. Army, Contract No. DA-30-115-
ORD-861.
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1 A complete list of references is impractical here and any attempt
at making specific references would be difficult. For extensive lists of
references the reader is referred to Proc. IRE, vol. 44, pp. 1229-1516;
October, 1956.

2 S, A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Co., Inc., New York, N. Y., 1st ed., p. 478; 1943.

8 C, L. Hogan, “The elements of non-reciprocal microwave de-
vices,” Proc. TRE, vol. 44, pp. 1345-1368; October, 1956,

of a dc magnetic field causes the permittivity or per-
meability (hereafter referred to as constitutive param-
eters) to become an unsymmetric tensor. Two exam-
ples are gaseous plasma and ferromagnetic materials,
especially low loss, magnetically-saturated ferrites.

Although the usual reciprocity theorem is not valid,
a modified reciprocity theorem* does apply to aniso-
tropic media. In this theorem, media characterized by
transposed tensor constitutive parameters are employed
in addition to the original media. In this paper, the mod-
ified reciprocity theorem forms a basis for the derivation
of orthogonality relationships for modes in waveguides
and cavities containing inhomogeneous, anisotropic
media.

Let us denote the general form of the constitutive
parameters in orthogonal coordinate systems as

€11 €12 €13 |-.U«11 M1z M13

[e] =1 & e e [u] = Lﬁm moa pas | . (1)

~ - a
€13 €23 €33 H13 M23  M33

In this notation the careted symbols, é,; and g, are the
elements in the 7th row and jth column of the constitu-
tive parameter tensors for media characterized by the
transposes of the above tensors. These media shall be
referred to as “transposed media.” In the case of gyro-
tropic media this has physical significance, since revers-

¢ R, F. Harrington and A, T. Villeneuve, “Reciprocity relation-
ships for gyrotropic media,” IRE Traxs. oN MicRowAVE THEORY
anxn TecaNiQuEes, vol. MTT-6, pp 308-310: Julv, 1958.
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ing the dc magnetic field transposes these tensors. Field
quantities in the transposed media will be denoted by
carets and a transposed tensor indicated by a tilde. Our
discussion is based on the following form of the modified
reciprocity theorem?*

ﬁ(ﬁa X By — Hy X E)-dS

=fff[(7a.~gb_m-m> —<7b-§,,—7?b.ﬁa)}dv. ©)

A second relation, similarly derived, which holds only
for the lossless case and which will also be used sub-
sequently is

fP > X By + B X B)-dS
=fff7,,*.7§,,+E*-ﬁ,,+7,,-E,*+m-ﬁ,,*]dv. @)

7 and X are electric and magnetic source currents.

GENERAL PROPERTIES OF MODES
IN CYLINDRICAL GUIDES

In the following sections orthogonality relationships
for modes in waveguides containing inhomogeneous an-
isotropic media will be discussed. For this discussion it is
useful to have some knowledge of general relationships
among the mode fields in the original media and in the
transposed media. This section is devoted to a study of
the field equations for such structures so that these re-
lationships may be investigated.

Let the fields of the various modes be denoted as fol-
lows

H, = o702, C))

Here it has been assumed that the guide axis is parallel
to the 2z axis and that the structure is uniform; <.e., its
material and electrical properties are independent of 2
(see Fig. 1). These will be referred to as “exponential

E, = &7,

Fig. 1—Section of guide containing inhomogeneous
anisotropic media.

modes” hereafter. The 4, represent modes traveling or
attenuating in either direction, depending on sign. Be-
fore proceeding it is convenient to express the constitu-
tive parameter tensors in a form more suitable to cylin-
drical structures as follows:
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In these, the elements of the sub-matrices are those of
the corresponding partitioned sections. In this notation
the field equations become

-V, X gat = jw[ﬁﬂ]géat +jw[.u2z]7zzgcaz (63-)
i, X ('Yaé—at + Vtgaz) = jw[ﬂlt]g—éat + jw[ﬂu]ﬁ'zscaz; (6b)
Vt X G_Cat = jw[izt]gat + jw[ehlazgaz; (6C)

—#, X ('Yug—éat + Vtgcaz) = jw[flt]gat + jw[fzt]‘ﬁzgaz- (6d)

where 8, = 8, — #%,8,,, etc. The differential operators may

be considered identical with the usual three dimensional
operators, since & and JC are independent of 2. The sub-

script ¢ on them arises from convention. The boundary
conditions at the guide walls are

—7 X 3 = [y]e. (1

where # is an outward normal and [y] is a tensor ad-
mittance. In the transposed media the field equations
take the form

— Ve X By = jw[ﬁ2t]3/—€bt + jeo[ 2] ,5Css (8a)
X (oo + V&) = jolm )R + julps)air, (8b)
Ve X 5ot = ool Eaulbor + juless] @b, (8¢)

~it X (34 + ViSss) = jol€1efBur + jolex@re, (8d)

subject to the boundary condition

- X f?éb = [y]/g\b (9)

at the walls.

In ref. 4 it is shown that for every 7, in the original
media there exists in the transposed media a propaga-
/t\ion 1 constant s = —7a, with fields which will be denoted
84, 3C,. In the general lossy case, there appears to be no
simple relation between the fields corresponding to ¥, in
the original media and those corresponding to —+, in
the transposed media. However, in the lossless case, the
following relations hold for the tensor permeability and
permittivity®

[ﬁzt] = [ﬁzz*], [ﬁ'u] = [ltu*], [#23] = [,u2z*],

and, for traveling modes, —v,=+,* Thus, with the re-
lationships

gat = i g:z* and Jaca = S_Ca*,

(10)

(11)

the field of (8) in the transposed media become the com-
plex conjugates of those of (6) in the original media.
Either pair of signs may be selected, and, for conven-
ience, the upper pair will be used in subsequent develop-

§ This may be seen from energy considerations.
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ments. The boundary conditions on the fields are satis-
fied by this since, for the lossless case,

Lyl = le].

Thus, it is seen that in the lossless case, for every travel-
ing mode in the original media characterized by &,, 3,
and 7,, there exists in the transposed media a travel-

(12)

ing mode characterized by &= ,*, 3,= —3C.* and
Ya=7s*= —v.. In the case of evanescent modes in loss-

less media, v.* =1, and the fields characterized by 7,
and —4, are no longer simply related.

Application to Gyrotropic Media

Because of their useful properties, two special orien-
tations of dc magnetization are commonly employed in
nonreciprocal devices containing gyrotropic media.
These are the cases of purely longitudinal and purely
transverse dc magnetization. The longitudinal case will
be considered first. The tensor permeability and permit-
tivity now assume the form

g —jc 0 e —jm O
=] u OJ; e=|jm ¢ 0], (13)
0 0 Mo 0 0 €4
and it is evident that
[pae] = [eae] = 0]
[Bee] = [E2] = [0]. (14)

Under these conditions, the equations in (6) assume the
simplified forms

— Vi X 8ar = jopotiaHas (15a)

e X (Vabat + ViBaz) = joo[p1:]3Car, (15b)
Ve X o = jolez:]i.8u (15¢)

— iy X (vaHar + Vi) = joler)€ar.  (15d)

These are the equations of a field characterized by &,
€as, HCas, Haz, Ye. However, substitution into Maxwell’s
equations shows that a field characterized by 84ty — Easz
—3Cqy, 3, and —1v, also satisfies the equations (15).
Examination of boundary conditions shows that they
also are satisfied, and the above field is then a possible
field in the untransposed media. Thus, when the dc mag-
netization is purely longitudinal (the anisotropy purely
transverse) both 4+, and —1, are eigenvalues of Max-
well’s equations.

The Case of Transverse Magnetization

If the dc magnetization is purely transverse, other
properties of the fields become evident. For this case,
the permeability and permittivity tensors assume the
forms

I35 iz | pag [ u] [ 2:]
-] oL ]
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Lezc]
. 16b
—€13 —€23 | €33 [622]:] ( )

Examination of (6) and (8) shows that, in this case, cor-
responding to the eigenvalue v, the fields in the original
media and the transposed media are related by

~ P

gat = gaty é:zz = - gaz; J—Eat = - &—Cat,

3os = 3Cas, (17)

This may be thought of as a modified reflectional sym-
metry relating the original field to the transposed field.
This relation, in conjunction with (11) in the lossless
case, leads to

Yo = = Ya.

Har = Hac*

8t = 8as*

Koz = — 3Cas

Gar = — Bag (18)

These equations state that the transverse field com-
ponents are real and the longitudinal components are
imaginary. This means that, when the dc magnetization
is purely transverse, and no loss is present, it is always
possible to express the fields in terms of modes whose trans-
verse fields are linearly polarized.

The results of this section will be applied to simplify
certain of the orthogonality relations to be examined.

ORTHOGONALITY RELATIONSHIPS FOR
CyrLiNDRICAL GUIDES

In the study of natural modes in closed cylindrical
waveguides containing komogeneous tsotropic media, it
is found that the transverse and longitudinal field com-
ponents satisfy certain orthogonality relationships.®
Two general types of orthogonality may be considered;
those involving vector products of electric and mag-
netic fields of the various modes, and those involving
scalar products of the various mode fields. These or-
thogonality relationships may be summarized as

ff (8: X 5C,y)-dS = 0
- . _ Yo # i_ Ya
g 3,*)-dS = 0
J] @oxmn i
f f EuEundS = f f Epe BardS = f f £, E.dS
== ff l,:‘cbz:}cazds = ff %bt‘ﬁatds = ff @b‘@ads = 0

(19¢)

Yo # Ve (19a)

(19b)

'Yb# + Ya.

8 N. Marcuvitz, “Waveguide Handbook,” Rad. Lab. Ser. McGraw
Hill Book Co., Inc., New York, N. Y., vol. 10, 1st ed., p. 5; 1951.
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and finally,

ff 8bz8az*ds = ff gbt'ga;*ds = ff Eb-ga*dS
= f f FCp.HCa*dS = f f 3Cpy+ 3Car*dS

— Yy 7%=+ Ya
=ff3c,,-sc,,*ds=o, ’

s #= F y.*. (19d)
The integrations are performed over guide cross sec-
tions. Adler” refers to the first two expressions as “power
orthogonality” and to the second two groups as “energy
orthogonality.” The power orthogonality relationships
may be derived from the usual reciprocity relationships
for isotropic media. The energy relationships appear to
result from the fact that in guides containing homogene-
ous, isotropic media both §, and 3C, are solutions of the
same scalar Helmholtz equation and satisfy certain
boundary conditions at the walls.

General Orthogonality Relationships for Inhomogeneous
Awnisotropic Guides

When the guides contain inhomogeneous, isotropic
media, the longitudinal field components no longer
satisfy the scalar Helmholtz equation and the energy
orthogonality relationships no longer hold in general.?
However, the orthogonality relationship (19a) still
holds as a result of reciprocity and reflectional sym-
metry. Eq. (19b) also holds in the lossless case. If, how-
ever, the media are also anisoiropic, even the power or-
thogonality relationships must be modified. This is be-
cause the usual reciprocity no longer apglies and the re-
flectional symmetry of the arrangement is usually lost.
In this case, the modified reciprocity theorem forms the
basis of the development. One may begin by considering
a source-free region of closed cylindrical guide contain-
ing anisotropic media. All material and electrical proper-
ties are assumed to be independent of the longitudinal
coordinate, which is chosen as z. The situation is as
shown in Fig. 2. Under these conditions (2) becomes

X

:

Yo ]

Fig. 2,

?R. B. Adler, “Properties of Guided Waves on Inhomogeneous
Cylindrical Structures,” Res. Lab. of Elec., Mass. Inst. Tech., Cam-
bridge, Tech. Rep. No. 102, pp. 28-29; May 27, 1949.

§ Ibdd., pp. 12 and 29.
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ﬁ (Hv X Eo. — Hy X Ep)+dS = 0. (20)
The subscripts refer to possible waveguide modes, and
the surface of integration is composed of the guide walls
and the two cross sections of guide. dS is in the direction
of the outward normal #. Let the guide walls be tensor
admittance sheets such that

—f X 3, =
-7 X 5 =

(21a)
(21b)

bl
[y]gb.

For the purposes of this paper the tensor [y] will be
restricted to the form

Y Yz 0
_ _ [ye] (0]
Vaz

where the division is similar to that of [u] and [e]
above. This form is chosen because it leads to symmet-
rical expressions and is sufficiently general for most pur-
poses.® Under these circumstances, for exponential
modes, (20) may be reduced to!®

ff (ET\CM X gat - Eéat X Ebt) -dS = Nody,~va (23)

where N, is a normalization constant and &;; is the
Kronecker delta. The integration is over the guide cross
section.

In the lossless case (3), can through an analogous pro-
cedure, be put into the following form:

ff (ibt* X gat -+ Z‘éat X gbt*) dS = Mdve*,—va (24)

where the guide walls are represented by a lossless sym-
metric tensor admittance of the same form as in (22).
It may be seen from (11) that for traveling modes in
lossless guide M, = — N,. It should be pointed out, how-
ever, that (24) is valid for both traveling and evanescent
modes.

Eqgs. (23) and (24) are the generalized power orthog-
onality relationships which hold for guides containing
media characterized by tensor permeabilities or per-
mittivities and subject to the appropriate boundary con-
ditions.

Series Expansion of Fields

Through use of (23) it is possible to expand an arbi-
trary transverse field in terms of the transverse fields
of exponential modes, assuming that these transverse
fields form a complete set. The completeness, however,
will not be discussed here. Under this assumption, an

% Ibid., pp. 16~17.

10 This expression and a similar one for purely transverse aniso-
tropy have been obtained by Bresler, Joshi and Marcuvitz from the
point of view of the theory of linear operators rather than reciprocity.
A.D. Bresler, G. H. Joshi, N. Marcuvitz, “Orthogonality Properties
for Modes in Passive and Active Uniform Wave Guides,” J. Appl.
Phys., vol. 29, pp. 794-798; May, 1958,
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arbitrary transverse field may be expressed in series
form as

gg = Z An-f—;nt; Eg = Z An—.jéng. (25)
On forming the vector products 3m¢X8; and 3C; X s,
subtracting and integrating over the guide cross section,

one gets
ff (Bome X & — T4 X Bmi) -dS

m s

N

(26)

where it has been assumed that the order of summation
and integration may be interchanged. Thus, the co-
efficients of the expansion are determined.

Power Flow Relationships

Eq. (24) may be interpreted in terms of power flow
in the guide. This may be seen by considering two dis-
tinct modes existing simultaneously in a closed guide.
On forming the vector product of E and H and integrat-
ing the longitudinal component over the guide cross sec-
tion, one arrives at the following result. The net real
power transmitied down a lossless guide is the algebraic
sum of the power carried by the individual modes. The
same conclusion may not be drawn about the reactive
power, however.

For the general case, (23) and (24) appear to be
the only readily available orthogonality expressions.
Due to lack of symmetry of [u] and [e], there seems to
be no way of reducing them to single cross products as
in the isotropic case. In special cases; e.g., in gyrotropic
media for special orientations of the dc magnetic field,
the tensor properties discussed above provide some addi-
tional relationships. These are discussed in the following
sections.

Longitudinal Magnetization of Gyrotropic Media

It was pointed out above that, for longitudinal dc
magnetization of gyrotropic media, both vy, and —v.
are eigenvalues of Maxwell’s equations in cylindrical
guides and reflectional symmetry exists. Through use of
these properties, (23) may be further simplified since
one then has the pair of relationships

ff (?Ct X 841 — 3ar X gl;t)'dg = Ntd9y,va (27a)
and

f f (:T’cw X Bt + Hur X 85e)-dS = 0. (27b)

Together, these yield the simple orthogonality relation-
ship

ff (o X Ea)-dS

= ff (G-Eat X gbt) ds = %Nbs'?b,j:va- (28)
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In the lossless case, (24) leads to the relationship
[ e x 8y-ds
= ff (géat X gbt*)'dg = %Mbayb’,iva. (29)

This last equation may be interpreted in terms of power
flow as follows. The net complex power transmitted down
a lossless guide whose anisotropy 1is purely transverse is
the algebraic sum of the complex powers of the individual
modes. This statement is more specific than could be
made for the general case, since it now includes the re-
active power. The general case included only the real
power.

Transverse Magnetization of Gyrotropic Media

In view of the relationship between fields in the orig-
inal and in the transposed media for transverse mag-
netization, the power orthogonality relationship (23)
may be rewritten as

f f [Bou X Bat + Fout X Bor) @S = — Nidfprar  (30)

This special case involves the fields in only the original
media.

Energy T'ype Relationships

Through use of the field equations (6) and (8) and the
application of various vector identities, it is possible to
rewrite the preceding power orthogonality relationships
in various other forms. Under certain conditions in the
lossless case, these may be interpreted in terms of stored
energy. The details are long and involved and again,
only results are presented here for the special case of
purely transverse anisotropy.!! In this special case, the
form of [u] and [e] make it possible to derive the rela-
tionship

fj: @s-[€]-Ba + - [u]3C)dS

1 = .
+ — @ & [y]8adl = 0,
jot ¢

(31)

all F?b) Ya.

Here Cis the perimeter of the guide cross section. In the
lossless case, one gets the corresponding relationship

_ _ 1 _ _
f f sb*-[e]sads-{-—-f &x* - [b]e.dl
8 w c
= f f 3o [1]3CdS,  all vo*, va. (32)
&

This equation may be interpreted in terms of mutual
time-average electric and magnetic energies of twa

1 For details see in A. T. Villeneuve, “A study of Reciprocity
Relationships For Gyrotropic Media,” Res. Inst., Syracuse Univer-
sity, Syracuse, N. Y., Final Rept. No. EES09-589F; September,
1958.
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modes, if one interprets the integral over C as the elec-
tric energy stored in the guide walls per unit length.
With this interpretation, (32) states that the mutual
time average stored electric and magnetic energies of two
modes are equal.

From the foregoing, it is evident that when cylindrical
guides contain inhomogeneous, anisotropic media, most
of the usual orthogonality relationships are lost. Only
a modified power orthogonality relationship remains in
general. The energy orthogonality relationships are de-
stroyed. However, when the anisotropy is purely trans-
verse, the orthogonality relationships are similar to
those which exist for the inhomogeneous, isetropic case.

Orthogonality Relationships for Closed Cavities

Next, orthogonality relationships for closed cavities
containing inhomogeneous anisotropic media will be in-
vestigated. Consider such a closed cavity with perfectly
conducting walls as in Fig. 3.

@

Fig. 3—Cavity with inhomogeneous anistropic media.

S

The usual orthogonality relationships among the
modes'? do not hold, except, possibly, in special cases.
However, modified orthogonality relationships do exist.
It has been demonstrated from the modified reciprocity
theorem that the natural resonant frequencies of such a
cavity are identical in both the transposed and the orig-
inal media.®* This forms the basis of the modified or-
thogonality conditions as follows. In the original cavity
there exists a set of natural modes characterized by
E;, H; and w;, where w;=w;' —jw;"’ in general. In the
cavity with media transposg&i (/\transposed cavity), one
has modes characterized by E;, H; and w;. Note that the
w; are the same in both cases. The fields in the original
cavity satisfy the equations

-V X E; = jo{ulH; (33a)

V X H; = jw[¢|E, (33b)

VX [u]"'V X E, = w:[e]E; (34a)
VX [V X H; = w?[u]H: (34b)

12 G, Toraldo di Francia, “Electromagnetic Waves,” Interscience
Pubhshers, Inc., New York N. Y., Isted., p. 303; 1955.
1B R.F. Harrmgton and A. T. Vllleneuve, op. cit.
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subject to the boundary condition that the tangential
component of Ej\ vanish at the walls. Similar equations
are satisfied by E; and H; in the transposed case except
that the tensor constitutive parameters are transposed.

In order to study the orthogonality relationships, one
may proceed as follows. First, form the volume integral
over the cavity

fff FomV X [u]'V X E, —

E.-V X [a]"'V X Eudv. (35)

By the use of vector identities, the divergence theorem,
and (33) and (34), for both the original and transposed
media and boundary conditions on E, one arrives at the
orthogonality relationship

[ I f ettt =,

where the fields have been normalized and §,., is the
Kronecker delta. Through a similar procedure, one may
also arrive at the result

Jff 7w

the T, being automatically normalized when the E,
are normalized. In the lossless case, these reduce to

JJ et - [ f [ 7

Eq. (38) shows that ¢n closed cavities containing lossless
anisotropic media, the total elecivic or magnetic energy is
the sum of the energies of the individual modes with no
coupling terms between modes. However, when loss is
present, the above expressions do not necessarily hold
and some mutual energy terms may be present.

It may be seen from the foregoing that orthogonality
relationships for perfectly conducting cavities contain-
ing inhomogeneous anisotropic media are quite similar
to those for isotropic media except that fields in the
transposed cavity must be used in addition to those in
the original cavity. Only in the lossless case can energy
interpretations be given to these relationships, for in
this case the fields in the original and in the transposed
media are simply related.

(36)

|H.dv = 6pna, 37

W H o = Sus. (38)
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